The SUMO protease Verloren regulates dendrite and axon targeting in olfactory projection neurons.
نویسندگان
چکیده
Sumoylation is a post-translational modification regulating numerous biological processes. Small ubiquitin-like modifier (SUMO) proteases are required for the maturation and deconjugation of SUMO proteins, thereby either promoting or reverting sumoylation to modify protein function. Here, we show a novel role for a predicted SUMO protease, Verloren (Velo), during projection neuron (PN) target selection in the Drosophila olfactory system. PNs target their dendrites to specific glomeruli within the antennal lobe (AL) and their axons stereotypically into higher brain centers. We uncovered mutations in velo that disrupt PN targeting specificity. PN dendrites that normally target to a particular dorsolateral glomerulus instead mistarget to incorrect glomeruli within the AL or to brain regions outside the AL. velo mutant axons also display defects in arborization. These phenotypes are rescued by postmitotic expression of Velo in PNs but not by a catalytic domain mutant of Velo. Two other SUMO proteases, DmUlp1 and CG12717, can partially compensate for the function of Velo in PN dendrite targeting. Additionally, mutations in SUMO and lesswright (which encodes a SUMO conjugating enzyme) similarly disrupt PN targeting, confirming that sumoylation is required for neuronal target selection. Finally, genetic interaction studies suggest that Velo acts in SUMO deconjugation rather than in maturation. Our study provides the first in vivo evidence for a specific role of a SUMO protease during neuronal target selection that can be dissociated from its functions in neuronal proliferation and survival.
منابع مشابه
Histone deacetylase Rpd3 regulates olfactory projection neuron dendrite targeting via the transcription factor Prospero.
Compared to the mechanisms of axon guidance, relatively little is known about the transcriptional control of dendrite guidance. The Drosophila olfactory system with its stereotyped organization provides an excellent model to study the transcriptional control of dendrite wiring specificity. Each projection neuron (PN) targets its dendrites to a specific glomerulus in the antennal lobe and its ax...
متن کاملSecreted Semaphorins from Degenerating Larval ORN Axons Direct Adult Projection Neuron Dendrite Targeting
During assembly of the Drosophila olfactory circuit, projection neuron (PN) dendrites prepattern the developing antennal lobe before the arrival of axons from their presynaptic partners, the adult olfactory receptor neurons (ORNs). We previously found that levels of transmembrane Semaphorin-1a, which acts as a receptor, instruct PN dendrite targeting along the dorsolateral-ventromedial axis. He...
متن کاملMicroRNA Processing Pathway Regulates Olfactory Neuron Morphogenesis
The microRNA (miRNA) processing pathway produces miRNAs as posttranscriptional regulators of gene expression. The nuclear RNase III Drosha catalyzes the first processing step together with the dsRNA binding protein DGCR8/Pasha generating pre-miRNAs [1, 2]. The next cleavage employs the cytoplasmic RNase III Dicer producing miRNA duplexes [3, 4]. Finally, Argonautes are recruited with miRNAs int...
متن کاملGraded Expression of Semaphorin-1a Cell-Autonomously Directs Dendritic Targeting of Olfactory Projection Neurons
Gradients of axon guidance molecules instruct the formation of continuous neural maps, such as the retinotopic map in the vertebrate visual system. Here we show that molecular gradients can also instruct the formation of a discrete neural map. In the fly olfactory system, axons of 50 classes of olfactory receptor neurons (ORNs) and dendrites of 50 classes of projection neurons (PNs) form one-to...
متن کاملpiggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning.
Developmental axon pruning is widely used to refine neural circuits. We performed a mosaic screen to identify mutations affecting axon pruning of Drosophila mushroom body gamma neurons. We constructed a modified piggyBac vector with improved mutagenicity and generated insertions in >2000 genes. We identified two cohesin subunits (SMC1 and SA) as being essential for axon pruning. The cohesin com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 24 شماره
صفحات -
تاریخ انتشار 2012